كية مربنة (لبا مـكمة
تمح ونرسة فانّوب.

|
د.يسهبا سلمـانْ كمون

المحاضرة الخامسة

THE CLIPPER

Electronic Devices and Circuit Theory Eleventh Edition

Robert L. Boylestad and Louis Nashelsky

Diode clipper - Changing the offset

Negative limiter

Positive limiter

What if we mix these together?

Diode clipper

- When the input signal is positive D1 is forward biased; acting as positive clipper

Diode Clippers

The diode in a series clipper "clips" any voltage that does not forward bias it:

- A reverse-biasing polarity
- A forward-biasing polarity less than 0.7 V (for a silicon diode)

Biased Clippers

Adding a DC source

 in series with the clipping diode changes the effective forward bias of the diode.

Parallel Clippers

The diode in a parallel clipper circuit "clips" any voltage that forward biases it.

DC biasing can be added in series with the diode to change the clipping level.

Summary of Clipper Circuits

Simple Series Clippers (Ideal Diodes)
positive

Biased Series Clippers (Ideal Diodes)

NEGATIVE

Summary of Clipper Circuits

Simple Parallel Clippers (Ideal Diodes)

Biased Parallel Clippers (Ideal Diodes)

Summary of Clipper Circuits

Simple Series Clippers (Ideal Diodes)
POSITIVE

Biased Series Clippers (Ideal Diodes)

NEGATIVE

Clampers

A diode and capacitor can be combined to "clamp" an AC signal to a specific DC level.

Biased Clamper Circuits

The input signal can be any type of waveform such as a sine, square, or triangle wave.

The DC source lets you adjust the DC camping level.

Summary of Clamper Circuits

Clamping Networks

Zener Diodes

The Zener is a diode that is operated in reverse bias at the Zener Voltage $\left(V_{2}\right)$.

When $v_{i} \geq v_{z}$

- The Zener is on

- Voltage across the Zener is V_{Z}
- Zener current: $I_{Z}=I_{R}-I_{R L}$
- The Zener Power: $P_{z}=V_{z} l_{z}$

When $V_{i}<V_{Z}$

- The Zener is off
- The Zener acts as an open circuit

Zener Resistor Values

If R is too large, the Zener diode cannot conduct because $I_{z}<I_{z K}$. The minimum current is given by:

$$
I_{\text {Lmin }}=I_{R}-I_{Z K}
$$

The maximum value of resistance is:

$$
R_{L \max }=\frac{V_{Z}}{I_{L \text { min }}}
$$

If R is too small, $I_{z}>I_{z M}$. The maximum allowable current for the circuit is given by:

$$
I_{L \max }=\frac{V_{L}}{R_{L}}=\frac{V_{z}}{R_{L \min }}
$$

The minimum value of resistance is:

$$
R_{L \text { min }}=\frac{R V_{z}}{V_{i}-V_{z}}
$$

Voltage-Multiplier Circuits

Voltage multiplier circuits use a combination of diodes and capacitors to step up the output voltage of rectifier circuits. Three common voltage multipliers are the: Voltage Doubler
Voltage Tripler
Voltage Quadrupler

Voltage Doubler

This half-wave voltage doubler's output can be calculated using:

$$
V_{\text {out }}=V_{C 2}=2 V_{m}
$$

where $V_{m}=$ peak secondary voltage of the transformer

Voltage Doubler

Positive Half-Cycle

Negative Half-Cycle

D_{1} conducts

D_{2} is switched off

Capacitor C_{1} charges to V_{m}

D_{2} conducts

Voltage Tripler and Quadrupler

