كلية مدينة العلم الجامعة

قسم هندسة الحاسوب

محاضرات المرحلة الاولى لمادة الهندسة الالكترونية

اعداد د سعید سلمان کمون

المحاضرة الخامسة

THE CLIPPER

Electronic Devices and Circuit Theory

Eleventh Edition

Robert L. Boylestad and Louis Nashelsky

Diode clipper – Changing the offset

Positive limiter

What if we mix these together?

Diode clipper

 When the input signal is positive D1 is forward biased; acting as positive clipper

Diode Clippers

The diode in a series clipper "clips" any voltage that does not forward bias it:

- A reverse-biasing polarity
- A forward-biasing polarity less than 0.7 V (for a silicon diode)

Biased Clippers

Adding a DC source in series with the clipping diode changes the effective forward bias of the diode.

Parallel Clippers

The diode in a parallel clipper circuit "clips" any voltage that forward biases it.

DC biasing can be added in series with the diode to change the clipping level.

Summary of Clipper Circuits

Summary of Clipper Circuits

Simple Parallel Clippers (Ideal Diodes)

Biased Parallel Clippers (Ideal Diodes)

Summary of Clipper Circuits

Simple Series Clippers (Ideal Diodes)

POSITIVE

NEGATIVE

Biased Series Clippers (Ideal Diodes)

Clampers

A diode and capacitor can be combined to "clamp" an AC signal to a specific DC level.

Biased Clamper Circuits

The input signal can be any type of waveform such as a sine, square, or triangle wave.

The DC source lets you adjust the DC camping level.

Summary of Clamper Circuits

Zener Diodes

The Zener is a diode that is operated in reverse bias at the Zener Voltage (V_z) .

When $V_i \ge V_Z$

- The Zener is on
- Voltage across the Zener is V_Z
- Zener current: $I_Z = I_R I_{RL}$
- The Zener Power: $P_Z = V_Z I_Z$

When $V_i < V_Z$

- · The Zener is off
- The Zener acts as an open circuit

Zener Resistor Values

If R is too large, the Zener diode cannot conduct because $I_Z < I_{ZK}$. The minimum current is given by:

$$I_{Lmin} = I_R - I_{ZK}$$

The *maximum* value of resistance is:

$$R_{Lmax} = \frac{V_Z}{I_{Lmin}}$$

 $V_{i} = V_{ZM}$ V_{ZM} P_{ZM}

If R is too small, $I_Z > I_{ZM}$. The maximum allowable current for the circuit is given by:

$$I_{L\text{max}} = \frac{V_L}{R_L} = \frac{V_Z}{R_{L\text{min}}}$$

The *minimum* value of resistance is:

$$R_{L\min} = \frac{RV_Z}{V_i - V_Z}$$

Voltage-Multiplier Circuits

Voltage multiplier circuits use a combination of diodes and capacitors to step up the output voltage of rectifier circuits. Three common voltage multipliers are the:

Voltage Doubler

Voltage Tripler

Voltage Quadrupler

Voltage Doubler

This half-wave voltage doubler's output can be calculated using:

$$V_{out} = V_{C2} = 2 V_m$$

where V_m = peak secondary voltage of the transformer

Voltage Doubler

Positive Half-Cycle

 D_1 conducts

D₂ is switched off

Negative Half-Cycle

Capacitor C_1 charges to V_m D_1 is switched off

D₂ conducts

$$V_{\text{out}} = V_{\text{C2}} = 2V_{\text{m}}$$

Voltage Tripler and Quadrupler

